18.022 Recitation Handout (with solutions)

01 December 2014

1. (7.1.30 in Colley, 4 th edition) Let S be the surface defined by

$$
z=\frac{1}{\sqrt{x^{2}+y^{2}}} \text { for } z \geq 1
$$

(a) Sketch the graph of this surface.
(b) Show that the volume of the region bounded by S and the plane $z=1$ is finite. (You will need to use an improper integral.)
(c) Show that the surface area of S is infinite.

Solution. (a) See the graph below.

(b) The volume is given by $\int_{0}^{1} \int_{0}^{2 \pi}\left(r^{-1}-1\right) r d \theta d r=\int_{0}^{1} \int_{0}^{2 \pi}(1-r) d \theta d r$, which is finite since the integrand is bounded and the region of integration is compact. (c) The surface area of S is given by

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{1+f_{x}^{2}+f_{y}^{2}} r d \theta d r & =\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{1+x^{2} /\left(x^{2}+y^{2}\right)^{3}+y^{2} /\left(x^{2}+y^{2}\right)^{3}} r d \theta d r \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \sqrt{1+r^{-4}} r d \theta d r \\
& =2 \pi \int_{0}^{1} \sqrt{r^{2}+r^{-2}} d r
\end{aligned}
$$

This integral is infinite because the second term dominates, and $\int_{0}^{1} \frac{d r}{r}=+\infty$. To prove this rigorously, we can drop the first term:

$$
2 \pi \int_{0}^{1} \sqrt{r^{2}+r^{-2}} d r \geq 2 \pi \int_{0}^{1} \sqrt{r^{-2}} d r=+\infty
$$

2. (7.2.1 in Colley, 4th edition) Let $\mathbf{X}(s, t)=(s, s+t, t), 0 \leq s \leq 1,0 \leq t \leq 2$. Find $\iint_{\mathbf{X}}\left(x^{2}+y^{2}+z^{2}\right) d S$.

Solution. We have

$$
\int_{0}^{1} \int_{0}^{2}\left(s^{2}+(s+t)^{2}+t^{2}\right) \overbrace{\sqrt{\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(y, z)}{\partial(s, t)}\right)^{2}}}^{\sqrt{3}} d t d s=26 \sqrt{3} / 3 .
$$

3. (7.2.27 in Colley, 4th edition) Let S be the funnel-shaped surface defined by $x^{2}+y^{2}=z^{2}$ for $1 \leq z \leq 9$ and $x^{2}+y^{2}=1$ for $0 \leq z \leq 1$.
(a) Sketch S.
(b) Determine outward-pointing unit normal vectors to S .
(c) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and S is oriented by outward normals.

Solution. (a) See the graph below.

(b) The outward pointing unit vectors on the cylindrical part of the cylinder are $x \mathbf{i}+y \mathbf{j}$. On the lateral face, the unit normal is $\left(\frac{x}{z \sqrt{2}}, \frac{y}{z \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$. (c) We calculate over the cylindrical surface S_{1}

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}}(-y, x, z) \cdot(x, y, 0) d S=\iint_{S_{1}} 0 d S=0 .
$$

Over the conical surface, we calculate

$$
\begin{aligned}
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{S_{1}}(-y, x, z) \cdot\left(\frac{x}{z \sqrt{2}}, \frac{y}{z \sqrt{2}},-\frac{1}{\sqrt{2}}\right) d S \\
& =-\frac{1}{\sqrt{2}} \iint_{S_{1}} z d S .
\end{aligned}
$$

To evaluate this surface integral, we use slices perpendicular to the z-axis. The slice at height z is a thin circular strip of radius z and width $z \sqrt{2}$ (the factor of $\sqrt{2}$ arising from the 45° lean). Thus

$$
\begin{aligned}
-\frac{1}{\sqrt{2}} \iint_{S_{1}} z d S & =-\frac{1}{\sqrt{2}} \int_{1}^{9} 2 \pi z(z \sqrt{2}) d z \\
& =2 \pi\left[z^{3} / 3\right]_{1}^{9} \\
& =-1456 \pi / 3
\end{aligned}
$$

Adding the contributions from S_{1} and S_{2}, we get $-1456 \pi / 3$.

