1. Verify that divergence, curl, and gradient are linear operators.

Solution. For divergence, we want to show that for all vector fields \mathbf{F} and \mathbf{G} and scalars α and β, we have

$$
\nabla \cdot(\alpha \mathbf{F}+\beta \mathbf{G})=\alpha \nabla \cdot \mathbf{F}+\beta \nabla \cdot \mathbf{G}
$$

The left-hand side is

$$
\frac{\partial}{\partial x}\left(\alpha F_{1}+\beta G_{1}\right)+\frac{\partial}{\partial y}\left(\alpha F_{2}+\beta G_{2}\right)+\frac{\partial}{\partial z}\left(\alpha F_{3}+\beta G_{3}\right)=\alpha \frac{\partial F_{1}}{\partial x}+\beta \frac{\partial G_{1}}{\partial x}+\alpha \frac{\partial F_{2}}{\partial y}+\beta \frac{\partial G_{2}}{\partial y}+\alpha \frac{\partial F_{3}}{\partial z}+\beta \frac{\partial G_{3}}{\partial z}
$$

which equals the right-hand side. Calculations for gradient and curl are similar.
2. Let $\mathbf{F}(x, y, z)=\left(3 x^{2}+\frac{1}{2} y^{2}+e^{z}, x y+z, f(x, y, z)\right)$. Find all f such that \mathbf{F} is curl-free.

Solution. The third component of $\nabla \times \mathbf{F}$ is $y-(1 / 2)(2 y)=0$, as desired. For the first component to be zero, we must have $f_{y}=1$, and for the second component to be zero we must have $f_{x}=e^{z}$. Integrating these two equations tells us that $f(x, y, z)=y+C_{1}(x, z)$ and $f(x, y, z)=x e^{z}+C_{2}(y, z)$ for functions C_{1} and C_{2} which do not depend on y or x respectively. Putting these two together, we see that $f(x, y, z)=$ $x e^{z}+y+C(z)$ for any differentiable function C.
3. Confirm that for a vector field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, we have

$$
\nabla \times(\nabla \times \mathbf{F})=\nabla(\nabla \cdot \mathbf{F})-\nabla^{2} \mathbf{F}
$$

where $\nabla^{2} \mathbf{F}$ is defined to mean "take the Laplacian of each component of \mathbf{F}." Is it possible to derive this identity from $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$?

Solution. [Omitted]
4. Let \mathbf{F} be a C^{2} vector field on \mathbb{R}^{3}. Show that $\nabla \times \mathbf{F}$ is incompressible.

Solution. We calculate

$$
\nabla \cdot(\nabla \times \mathbf{F})=\frac{\partial^{2} F_{3}}{\partial x \partial y}-\frac{\partial^{2} F_{2}}{\partial x \partial z}+\frac{\partial^{2} F_{1}}{\partial y \partial z}-\frac{\partial^{2} F_{3}}{\partial y \partial x}+\frac{\partial^{2} F_{2}}{\partial z \partial x}-\frac{\partial^{2} F_{1}}{\partial z \partial y}=0
$$

since the mixed partials don't depend on the order of differentiation, as \mathbf{F} is C^{2}.

