18.022 Recitation Handout (with solutions) 22 September 2014

1. (1.9.22 in *Colley*) Given an arbitrary tetrahedron, associate to each of its four triangular faces a vector outwardly normal to that face with length equal to the area of the face. Show that the sum of these four vectors is zero.

Solution. If **a**, **b**, and **c** are three vectors along three edges of the tetrahedron, then the four vectors in question are $\frac{1}{2}\mathbf{a} \times \mathbf{b}$, $\frac{1}{2}\mathbf{b} \times \mathbf{c}$, $\frac{1}{2}\mathbf{c} \times \mathbf{a}$, and $\frac{1}{2}(\mathbf{c} - \mathbf{a}) \times (\mathbf{b} - \mathbf{a})$. Summing these and using linearity of the cross product, we find that their sum vanishes.

2. (1.9.14 in *Colley*) The median of a triangle is the line segment that joins a vertex of a triangle to the midpoint of the opposite side. The purpose of this problem is to use vectors to show that the medians of a triangle all meet at a point.

(a) Let M_1 be the midpoint of BC, let M_2 be the midpoint of AC, and let M_3 be the midpoint of AB. Write $\overrightarrow{BM_2}$ and $\overrightarrow{CM_3}$ in terms of \overrightarrow{AB} and \overrightarrow{AC} .

(b) Use the fact that $\overrightarrow{CB} = \overrightarrow{CP} + \overrightarrow{PB} = \overrightarrow{CA} + \overrightarrow{AB}$ to show that *P* must lie two-thirds of the way from *B* to M_2 and two-thirds of the way from *C* to M_3 .

(c) Use part (b) to show why all three medians must meet at *P*.

Solution. (a) We have $\overrightarrow{CM_3} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$ and $\overrightarrow{BM_2} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}$, by definition of vector addition. (b) Define λ and μ so that $\overrightarrow{CP} = \lambda \overrightarrow{CM_3}$ and $\overrightarrow{BP} = \overrightarrow{BM_2}$. Using the suggested equation, we get $\overrightarrow{AB} - \overrightarrow{AC} = (\lambda/2 + \mu)\overrightarrow{AB} - (\lambda + \mu/2)\overrightarrow{AC}$. Since \overrightarrow{AB} and \overrightarrow{AC} are linearly independent, this happens only if the coefficients on both sides match. Solving this system for λ and μ , we find $\lambda = \mu = 2/3$ as desired. (c) If the segment from *A* to *M*₁ does not pass through *P*, then it intersects *CM*₃ and *BM*₂ at two different points *Q* and *R*. However, the preceding argument applied to the pairs (*A*, *C*) and (*A*, *B*) in place of (*B*, *C*) shows that *Q* and *R* each lie 2/3 of the way from *A* to *M*₁. Thus *Q* = *R*, a contradiction.

3. Find the equation of a plane *P* perpendicular to (1,2,-1) containing the line that passes through the two points (-2,5,4) and (5,1,3). Find the distance from *P* to the plane *P'* whose equation is x+2y-z=28.

Solution. The equation of the plane is $(1, 2, -1) \cdot (x+2, y-5, z-4) = 0$, which simplifies to x+2y-z = 4. Note that we would have gotten the same result had we used the second point instead of the first point. The distance between the planes is $(28 - 4)/\sqrt{1^2 + 2^2 + (-1)^2} = 4\sqrt{6}$. See the 19 September 2012 recitation handout for a derivation of this formula.

4. (Fun/Challenge problem) Example 9 of Section 1.5 in the book asks us to compute the distance between the lines $\ell_1(t) = (0, 5, -1) + t(2, 1, 3)$ and $\ell_2(t) = (-1, 2, 0) + t(1, -1, 0)$. The solution given in the book uses vectors; our goal here is to take an algebraic approach for comparison. Define D(s, t) = $|\ell_1(t) - \ell_2(t)|^2$, and find the values of *s* and *t* which minimize D(s, t) (using calculus methods or otherwise).

Solution. We have $D(s, t) = (2t - (-1 + s))^2 + (5 + t - (2 - s))^2 + (-1 + 3t)^2$, and if D is minimized then

 $\partial D/\partial s = 0$ and $\partial D/\partial t = 0$. These two derivatives are $\partial D/\partial s = 4 + 4s - 2t$ and $\partial D/\partial t = 4 - 2s + 28t$. Setting each of these equal to 0 and solving the system, we find s = -10/9 and t = -2/9. Substituting into D(s, t), we find that the minimal squared distance is 25/3.