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1 Suppose that (an)∞
n=1 is a sequence of positive numbers for which an+1

an
converges to 1

2 as n→ ∞.

(a) What can you conclude about the convergence or divergence of ∑∞
n=1 an?

(b) What can you conclude about the convergence or divergence of (an)∞
n=1?

Explain why your conclusions are correct.

2 Determine the convergence of divergence of each of the following series.
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3 The Indian mathematician Srinivasa Ramanujan (about whom there is a pretty decent movie that was
in cinemas earlier this year: The Man Who Knew Infinity) discovered the following amazing formula:
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Verify that this series is indeed convergent.

4 (IMPORTANT) One test we did not cover in class is called the limit comparison test, which says:

If (an)∞
n=1 and (bn)∞

n=1 are sequences of positive numbers and an
bn

converges to
a positive number as n → ∞, then ∑∞

n=1 an and ∑∞
n=1 bn either both converge

or both diverge.

For example, ∑∞
n=1 arctan

(
1
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)
diverges since arctan(1/n)

1/n converges to 1 as n → ∞, and the series ∑∞
n=1

1
n

diverges. The beauty of the limit comparison test, compared to the regular comparison test, is that it’s less
sensitive to things like plus/minus signs. Redo this problem from the last homework:

Determine whether ∑∞
n=1

1
3n−2n converges.

using the limit comparison test with an = 1
3n−2n and bn = 1

3n . Note: this test is particularly handy when (i)
you want to throw away terms which are being added to terms that dominate them, or (ii) you’re dealing
with a weird function you want to get rid of, like arctan in the above example.

5 Indicate whether each series is divergent, conditionally convergent, or absolutely convergent. Hint: for
the last one, you’re going to need the limit comparision test from the previous exercise.
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6 (a) Substitute t = 1 in the equation marked (11.3) in the notes to find an alternating infinite series which
sums to ln 2.

(b) Let Sn be the nth partial sum of the series from (a). Using a calculator or otherwise, determine for
n ∈ {1, 2, 3, 4, 5, 6} whether Sn is an overestimate or an underestimate of ln 2. Describe the pattern in your
sequence of answers, and explain why the pattern must continue for all n. (Hint: you might find some
inspiration in the text following the statement of Theorem 11.10)

7 Find the linear and quadratic approximations of each function at the specified point.

(a) f (x) =
1

1 + x
at x = 0 (b) f (x) = ln x at x = 1

8 Calculate the quadratic approximation Q(x) of f (x) = cos x centered at x = 0.

(a) Use a calculator to show that Q(0.1) is within 10−5 of cos(0.1).

(b) Find limx→0
1−Q(x)

x2 . Use L’Hospital’s rule to verify that this limit is equal to limx→0
1−cos(x)

x2 .

9 Determine the convergence or divergence of ∑∞
n=0(2

1/n − 1)n (this one is less complicated than it
seems).

10 A surprising feature of conditionally convergent series is that the terms can be rearranged to give a
different sum. For example,
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Show that the sum of the series obtained by rearranging the terms to get a ++− pattern is greater than
0.693147180 . . .:
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Hint: Write the “+ + −” sum as ∑∞
k=0
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)
and show that the kth term of this series is

positive for all k. Then show that the first term is already bigger than 0.693147180 . . . (you won’t need a
calculator for this).


