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Determine whether the following series converge or diverge. For each example, clearly state which
convergence test or tests you are using.
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(13 points) Determine the convergence or divergence of the following improper integral. Hint: watch
out for improperness inside the interval of convergence!
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E Suppose that (a,);;_; is a positive decreasing sequence which converges to 0. For all positive integers

n, define the partial sum

n
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(a) (7 points) Explain why Sy, S3, S5, S7, . .. is a decreasing sequence and Sy, S4, Se, . . . is an increasing se-
quence.

(b) (7 points) In the above context, every odd-indexed partial sum is greater than every even-indexed partial
sum. In other words, Sy > S; whenever k is odd and j is even (you are not being asked to show this; just
take it as given). What theorem, combined with this fact and part (a), allows you to conclude that both
51,53,55,57,...and Sy, 54, S, . .. converge as  — 00?



(12 points) Find a function f which satisfies f’(x) = xe* f(x)2.



E (15 points) By directly calculating derivatives of f and substituting into the formula for a Taylor poly-
nomial, find the third-order Taylor polynomial for f(x) = sinx + cos 2x centered at x = 0.



